

VRKG4Rec: Virtual Relational Knowledge Graph for Recommendation

Lingyun Lu School of Electronic Information and Communications, Huazhong University of Science and Technology Wuhan, China lulingyun@hust.edu.cn

Leibniz-Institut

Bang Wang School of Electronic Information and Communications, Huazhong University of Science and Technology Wuhan, China wangbang@hust.edu.cn

Zizhuo Zhang School of Electronic Information and Communications, Huazhong University of Science and Technology Wuhan, China zhangzizhuo@hust.edu.cn

Shenghao Liu School of Cyber Science and Engineering, Huazhong University of Science and Technology Wuhan, China liushenghao@hust.edu.cn

Han Xu School of Journalism and Information Communication, Huazhong University of Science and Technology Wuhan, China xuh@hust.edu.cn

(WSDM-2023) <u>https://github.com/lulu0913/VRKG4Rec</u>

Chongqing University of Technology

Introduction Approach Experiments

ATA Advanced Technique of Artificial Intelligence

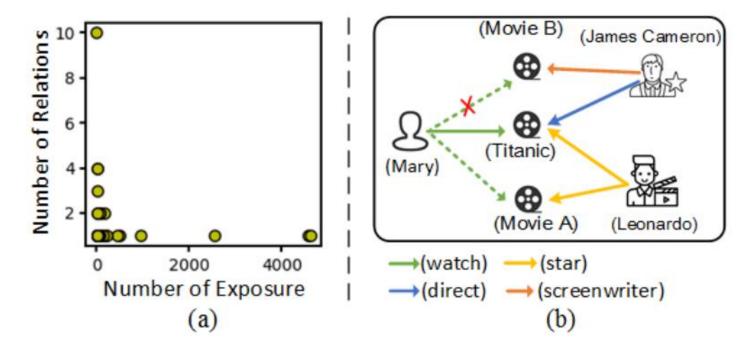


Figure 1: Illustration of two kinds of motivations. (a)The long-tail relation distribution of Last.FM dataset. (b)An illustration example of necessity of considering the relevance of different relations

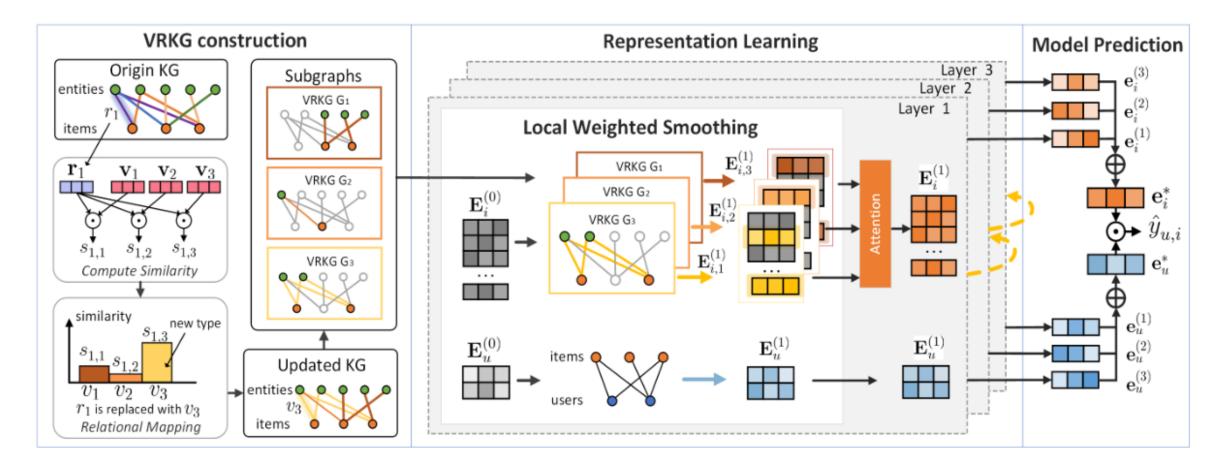


Figure 2: Overview of the proposed VRKG4Rec model

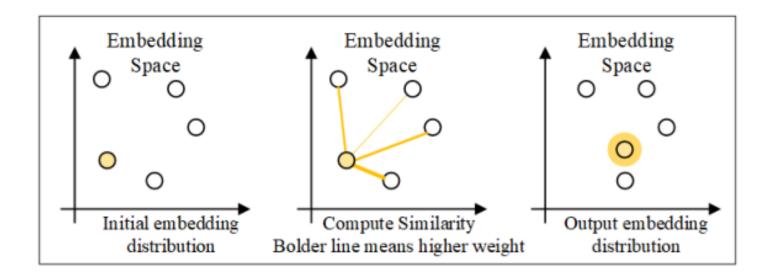
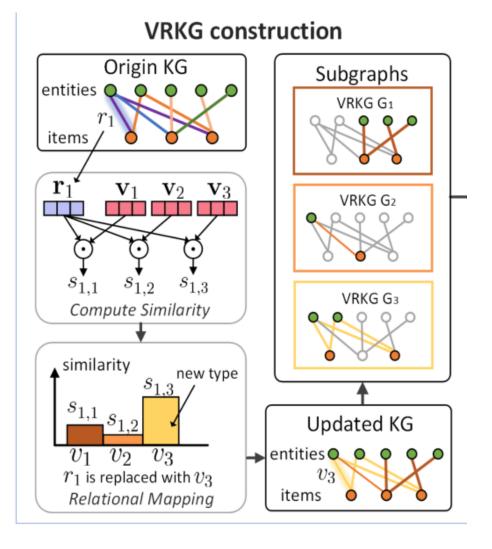
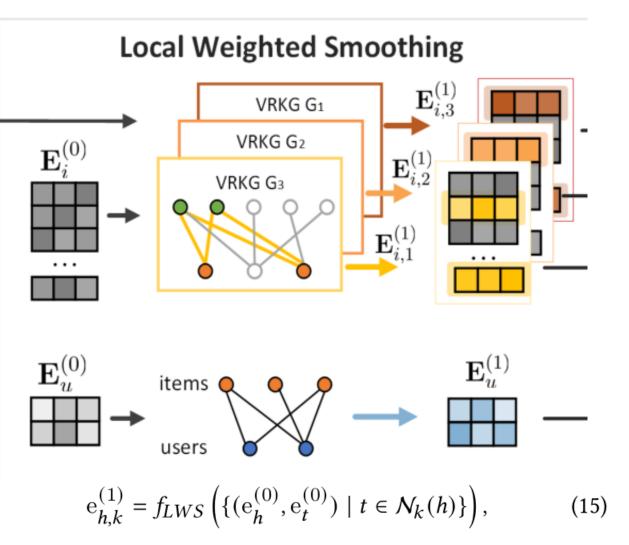



Figure 3: Core operation of LWS with single iteration

$$V = (v_1, v_2, ..., v_K)^{\mathsf{T}},$$
 (1)

$$s_{p} = (g(r_{p}, v_{1}), g(r_{p}, v_{2}), ..., g(r_{p}, v_{K}))$$
 (2)

$$g(\mathbf{r}_{\mathrm{p}}, \mathbf{v}_{\mathrm{k}}) = \mathbf{r}_{\mathrm{p}}^{\top} \mathbf{v}_{\mathrm{k}}$$
(3)


$$k' = \arg \max s_{\rm p}$$
 (4)

$$= \arg \max_{k=1,2,...,K} (g(\mathbf{r}_{\mathbf{p}}, \mathbf{v}_{1}), ..., g(\mathbf{r}_{\mathbf{p}}, \mathbf{v}_{k}), ...)$$
(5)

$$(h, r_p, t) \leftarrow (h, v_{k'}, t). \tag{6}$$

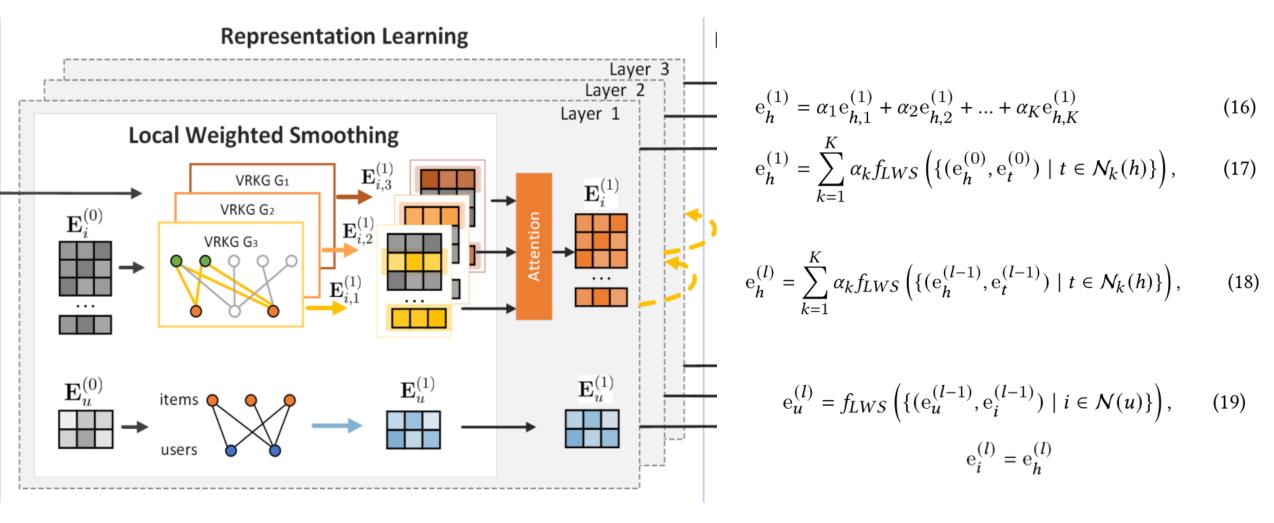
$$\mathcal{G}_{k} = \{ (h, r', t) \mid (h, r', t) \in \mathcal{G}', r' = v_{k} \}.$$
(7)

$$\mathbf{e}_{\mathcal{N}_{k}(h)}^{(0)} = \sum_{t \in \mathcal{N}_{k}(h)} \pi(h, t) \mathbf{e}_{t}^{(0)}, \tag{8}$$

Approach

$$\pi(h,t) = \mathbf{e}_h^{(0)\mathsf{T}} \cdot \mathbf{e}_t^{(0)}, \tag{9}$$

$$\begin{aligned} \mathbf{u}_{h}^{(1)} &= \mathrm{AGG}(\mathbf{e}_{h}^{(0)}, \mathbf{e}_{\mathcal{N}_{k}(h)}^{(0)}) \\ &= \mathrm{NORM}(\mathbf{e}_{h}^{(0)} + \mathbf{e}_{\mathcal{N}_{k}(h)}^{(0)}), \end{aligned} \tag{10}$$


NORM(u) =
$$\frac{u}{\|u\|} \cdot \frac{\|u\|^2}{\|u\|^2 + 1}$$
, (12)

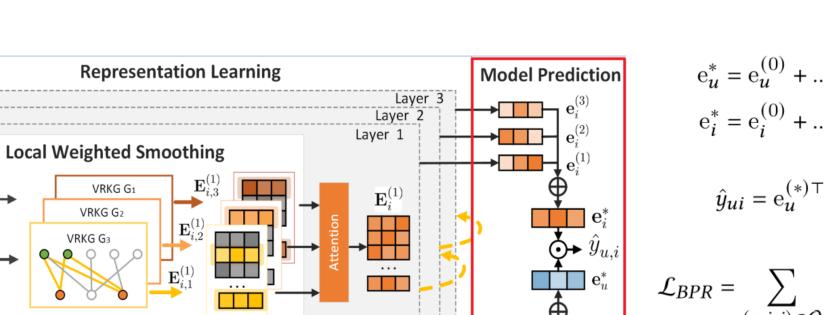
$$\mathbf{u}_{h,k}^{(1)} = f_{agg}\left(\{(\mathbf{e}_h^{(0)}, \mathbf{e}_t^{(0)}) \mid t \in \mathcal{N}_k(h)\}\right)$$
(13)

$$\mathbf{u}_{h,k}^{(q)} = f_{agg}\left(\{(\mathbf{u}_{h,k}^{(q-1)}, \mathbf{e}_t^{(0)}) \mid t \in \mathcal{N}_k(h)\}\right),\tag{14}$$

 $\mathbf{E}_{i}^{(0)}$

•••

 $\mathbf{E}_{u}^{(0)}$


VRKG G1

VRKG G2

VRKG G₃

items 🧲

users

 $\mathbf{E}_{u}^{(1)}$

 $\mathbf{E}_{u}^{(1)}$

 $\mathbf{e}_{u}^{(1)}$

 $\mathbf{e}_{u}^{(2)}$

 $\mathbf{e}_{u}^{(3)}$

Approach

$$e_u^* = e_u^{(0)} + \dots + e_u^{(L)}$$
 (20)

$$e_i^* = e_i^{(0)} + \dots + e_i^{(L)}$$
 (21)

$$\hat{y}_{ui} = e_u^{(*)\top} e_i^{(*)}.$$
 (22)

$$\mathcal{L}_{BPR} = \sum_{\substack{(u,i,j) \in O \\ O = \{(u,i,j) \mid (u,i) \in O^+, (u,j) \in O^-\}}} -\ln \sigma(\hat{y}_{ui} - \hat{y}_{uj}),$$
(23)

$$\mathcal{L} = \mathcal{L}_{BPR} + \lambda \|\Theta\|_2^2, \tag{24}$$

Dateset	Model	metric@1 (%)			metric@5 (%)			metric@10 (%)			metric@20 (%)		
		recall	NDCG	HR	recall	NDCG	HR	recall	NDCG	HR	recall	NDCG	HR
Last	FM	1.93	4.40	4.40	5.33	4.67	12.80	8.83	6.07	19.40	14.02	7.72	28.01
	NFM	1.50	3.90	3.90	5.95	4.80	13.20	9.52	6.26	21.10	14.97	8.05	29.90
	CKE	4.43	10.31	10.31	13.06	11.26	26.58	18.85	13.62	35.02	26.95	16.25	46.11
	KGAT	2.42	5.67	5.67	7.86	9.49	16.76	12.56	12.58	25.92	20.59	16.71	37.67
	KGIN	6.06	13.98	13.98	17.42	15.24	35.92	24.96	18.32	47.07	35.49	21.69	59.07
	proposed	6.79	16.34	16.34	20.15	17.62	39.84	28.05	20.85	50.69	38.78	23.02	61.84
	Improv.	+12.05%	+14.44%	+14.44%	+15.67%	+15.62%	+10.91%	+12.38%	+13.81%	+7.69%	+9.27%	+6.13%	+4.69%
ML	FM	3.53	32.70	32.70	11.65	27.57	64.30	19.41	26.88	76.50	29.11	27.98	85.10
	NFM	2.98	27.70	27.70	11.62	24.88	62.40	17.88	23.80	74.40	27.59	24.84	84.30
	CKE	3.85	33.54	33.54	13.62	28.78	66.65	21.19	27.89	78.29	31.30	29.18	86.51
	KGAT	2.63	23.15	23.15	10.03	20.68	57.01	16.98	21.09	71.59	26.37	23.05	82.15
	KGIN	4.69	11.99	11.99	15.14	12.92	31.22	22.66	15.95	43.22	<u>31.50</u>	19.35	53.22
	proposed	4.29	36.74	36.74	<u>15.01</u>	31.38	70.13	23.29	30.53	80.55	34.12	31.92	88.34
	Improv.	-8.69%	+9.54%	+9.54%	-0.85%	+9.03%	+5.22%	+2.78%	+9.47%	+2.89%	+8.31%	+9.39%	+2.12%

Table 2: Overall comparison of performance

30.70

30.61

30.34

32.00

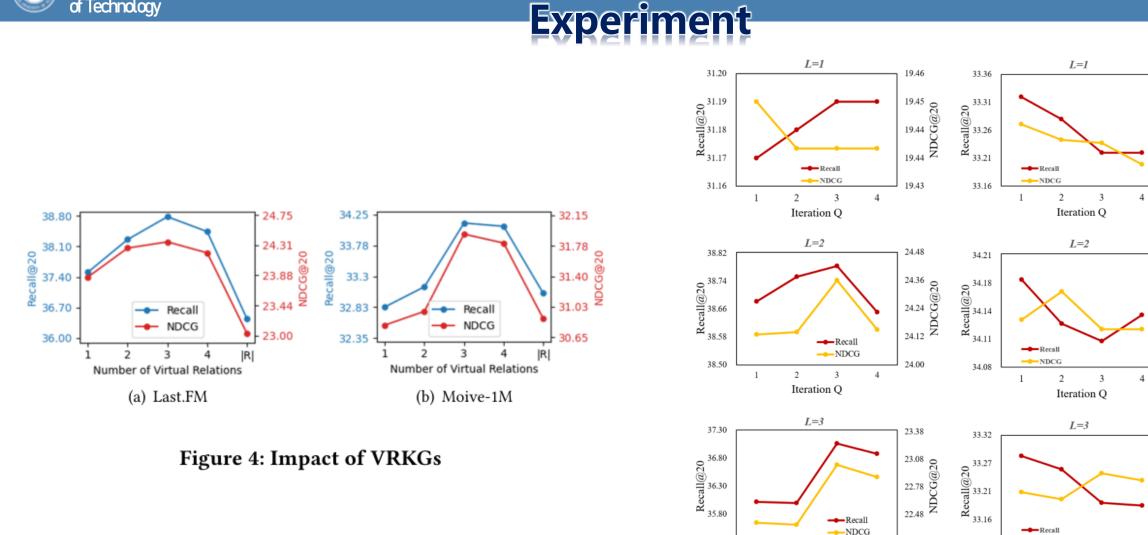
31.97 31.94 31.94 31.91

31.88

31.10

NDCG 20.15 NDCG 20.16 NDCG 20.16

30.95


4

3

Iteration Q

(b) Movie-1M

NDCG 30.61 30.62 30.02 30.43

35.30

1

2

Iteration Q

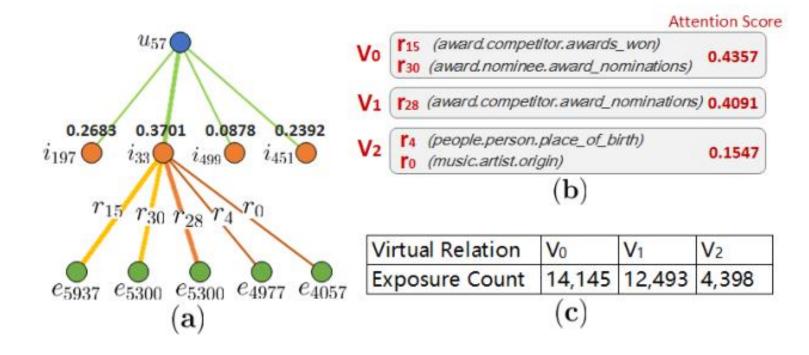
(a) Last-FM

3

Figure 5: Impact of iteration Q and Layer L

33.10

-NDCG


2

22.18

4

Thank you!